Skip to contents

All functions

bnplasso-package bnplasso
bnplasso: Fit linear regression models with the Nonparametric Bayesian Lasso
bnplasso.lm()
Fit linear regression models with a nonparametric Bayesian Lasso prior
bnplasso.spm()
Fit sparse means models with a nonparametric Bayesian Lasso prior
coclust.point()
Posterior co-clustering plot
coclust.probs()
Posterior co-clustering probabilities plot
coef(<lmBayes>)
Regression coefficients
coef(<spmBayes>)
Mean parameters
elppd()
Expected log pointwise predictive density (elppd)
fitted(<lmBayes>)
Fitted values
fitted(<spmBayes>)
Fitted values
get.partition()
Recover a partition
plot(<lmBayes>)
Plot the results and diagnostics for an object of class lmBayes
plot(<spmBayes>)
Plot the results and diagnostics for an object of class spmBayes
point.estimates()
Point estimates of the regression coefficients
predict(<lmBayes>)
Posterior predictive distribution for new data
print(<lmBayes>)
Print the results for an object of class lmBayes
print(<spmBayes>)
Print the results for an object of class spmBayes
psis.loo()
PSIS-LOO
residuals(<lmBayes>)
Residuals from an object of class lmBayes
summary(<lmBayes>)
Summary table of the results for an object of class lmBayes
summary(<spmBayes>)
Summary table of the results for an object of class spmBayes
widely.aic()
WAIC