Package index
-
bnplasso-packagebnplasso - bnplasso: Fit linear regression models with the Nonparametric Bayesian Lasso
-
bnplasso.lm() - Fit linear regression models with a nonparametric Bayesian Lasso prior
-
bnplasso.spm() - Fit sparse means models with a nonparametric Bayesian Lasso prior
-
coclust.point() - Posterior co-clustering plot
-
coclust.probs() - Posterior co-clustering probabilities plot
-
coef(<lmBayes>) - Regression coefficients
-
coef(<spmBayes>) - Mean parameters
-
elppd() - Expected log pointwise predictive density (elppd)
-
fitted(<lmBayes>) - Fitted values
-
fitted(<spmBayes>) - Fitted values
-
get.partition() - Recover a partition
-
plot(<lmBayes>) - Plot the results and diagnostics for an object of class
lmBayes -
plot(<spmBayes>) - Plot the results and diagnostics for an object of class
spmBayes -
point.estimates() - Point estimates of the regression coefficients
-
predict(<lmBayes>) - Posterior predictive distribution for new data
-
print(<lmBayes>) - Print the results for an object of class
lmBayes -
print(<spmBayes>) - Print the results for an object of class
spmBayes -
psis.loo() - PSIS-LOO
-
residuals(<lmBayes>) - Residuals from an object of class
lmBayes -
summary(<lmBayes>) - Summary table of the results for an object of class
lmBayes -
summary(<spmBayes>) - Summary table of the results for an object of class
spmBayes -
widely.aic() - WAIC